

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question paper log number P60704A Publications Code WFM02_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PMT

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

PMT

Summary of changes from Provisional Mark Scheme

A few minor changes were made to the Mark Scheme before marking on the marking service began.

Question Number	Summary of changes
Q01b	Totals for 1(b) and question corrected.
Q06	An alternative method was added. This was seen after standardization and was considered to satisfy the demands of the question and so was worthy of marks
Q08	Final mark should not have been "follow through"

Question Number	Scheme	Marks
1		
1(a)	$\frac{2}{r(r+1)(r-1)} = \frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}$	M1A1A1 (3)
1(b)	$r = 2 \qquad 1 - \frac{2}{2} + \frac{1}{3}$	
	$r = 3 \frac{1}{2} - \frac{2}{3} + \frac{1}{4}$	
	$r = 4 \frac{1}{3} - \frac{2}{4} + \frac{1}{5}$	M1
	$r = n - 1 \frac{1}{n - 2} - \frac{2}{n - 1} + \frac{1}{n}$	
	$r = n \qquad \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}$	M1
	$\sum_{r=2}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right) = \left(1 - \frac{2}{2} + \frac{1}{2} + \frac{1}{n} - \frac{2}{n} + \frac{1}{n+1} \right)$	A1
	$\frac{1}{2}\sum_{r=1}^{n}\frac{2}{r(r+1)(r-1)} = \frac{1}{2} \times \left(\frac{1}{2} - \frac{1}{n} + \frac{1}{n+1}\right) = \frac{n^2 + n - 2}{4n(n+1)}$	dM1A1 (5) [8]
(a) M1 A1A1 (b)	Attempt PFs by any valid method (by implication if 3 correct fractions seen) A1 any 2 fractions correct; A1 third fraction correct	
M1 M1	Method of differences with at least 3 terms at start and 2 at end OR 2 at start Must start at 2 and end at <i>n</i> One M mark for the initial terms and a second for Last lines may be missing $k/(n - 1)$ and $c/(n - 2)$ These 2 M marks may be correct extraction of terms. If starting from 1 MOM1 can be extracted	and 3 at end. r the final. implied by a
A1 dM1	Extract the remaining terms. $1 - 2/2$ may be missing and $1/n - 2/n$ may be conclude the $1/2$ and attempt a common denominator of the required form. Dep previous M marks	combined pends on both
A1	$\frac{n^2 + n - 2}{4n(n+1)}$	

ΡM	Т
	•

Question Number	Scheme	Marks
1(a)	Special Case: $\frac{2}{r(r^2-1)} = \frac{2r}{r^2-1} - \frac{2}{r}$ seen, award M1A1A0 Award M1A0A0 provided of the form $\frac{2}{r(r^2-1)} = \frac{Ar}{r^2-1} - \frac{B}{r}$	
1(b)	Terms listed as described above – award M1M1. Further progress unlikely a terms needed to establish the cancellation.	s too many

Question Number	Scheme	Marks
2	$w = \frac{z+2}{z-i}$ $z \neq i$	
	$z = \frac{2 + iw}{w - 1}$	M1
	$ z = 2 \Rightarrow \left \frac{2 + iw}{w - 1}\right = 2 \Rightarrow \left 2 + iw\right = 2 w - 1 $	
	$\left 2+\mathrm{i}u-v\right =2\left u+\mathrm{i}v-1\right $	M1 A1
	$(2-v)^{2} + u^{2} = 4((u-1)^{2} + v^{2})$	M1 A1
	$3u^2 + 3v^2 - 8u + 4v = 0 \text{oe}$	
	$\left(u - \frac{4}{3}\right)^2 + \left(v + \frac{2}{3}\right)^2 = \frac{20}{9}$ or $u^2 + v^2 - \frac{8}{3}u + \frac{4}{3}v = 0$	dM1
	(i) centre is $\left(\frac{4}{3}, -\frac{2}{3}\right)$	A1
	(ii) radius is $\frac{2\sqrt{5}}{3}$ oe	A1 [8]
M1	Rearrange equation to $z =$	
M1	Change w to $u + iv$ and use $ z = 2$ Allow if a different pair of letters used.	
A1	Correct equation	
M1	Correct use of Pythagoras on either side. Allow with 2 or 4 (RHS)	
A1	Correct unsimplified equation Attempt the size form. Coefficients for x^2 and y^2 must be 1. Depends on all	2 marious M
UIVII	Attempt the chere form. Coefficients for u and v must be 1. Depends on an marks	5 previous M
(i)A1	Correct centre given (no decimals) (Use of rounded decimals changes the va	lues)
(ii)A1	Correct radius given, any equivalent form (but no decimals) NB: These 2 A marks can only be awarded if the results have been deduced from a correct	
	circle equation.	
M1	Change w to $u + iv$ Allow a different pair of letters.	
M1	Rearrange equation to $z =$ and use $ z = 2$	
A1	Correct equation	
	Then as above.	
ALT 2	Very rare but may be seen:	l
	i maps to $\infty \Rightarrow \pm 2i$ map to a diameter of C	M1A1
	So $\frac{21+2}{i}$ and $\frac{-21+2}{-3i}$ are ends of a diameter	M2A1
	Calculate centre and radius	M1A1A1

3(a) $y = r \sin \theta = \sin \theta + \sin \theta \cos \theta$ OR $r \sin \theta = \sin \theta + \frac{1}{2} \sin 2\theta$ B1 $\frac{dy}{d\theta} = \cos \theta - \sin^2 \theta + \cos^2 \theta$ OR $\frac{dy}{d\theta} = \cos \theta + \cos 2\theta$ M1 $0 = \cos \theta + 2\cos^2 \theta - 1 = (2\cos \theta - 1)(\cos \theta + 1)$ M1 $\cos \theta = \frac{1}{2} (\cos \theta = -1 \text{ outside range for } \theta) = \theta = \frac{\pi}{3}$ M1 A is $\left(1\frac{1}{2}, \frac{\pi}{3}\right)$ A1 (4) 3(b) Area $= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1 + \cos \theta)^2 d\theta$ B1 $= \frac{1}{2} \int \left(1 + 2\cos \theta + \frac{1}{2}(\cos 2\theta + 1)\right) d\theta$ M1A1 $= \frac{1}{2} \left[\frac{3}{2}\theta + 2\sin \theta + \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$ dM1A1 $= \frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$ A1 (6) (a) B1 Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use of double ang formula is seen. M1 Differentiate $r \sin \theta$ or $r \cos \theta$ M1 Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos \theta$, limits not needed. M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an	Question Number	Scheme	Marks
$\frac{dy}{d\theta} = \cos \theta - \sin^2 \theta + \cos^2 \theta \qquad \text{OR} \frac{dy}{d\theta} = \cos \theta + \cos 2\theta \qquad \text{MI}$ $0 = \cos \theta + 2\cos^2 \theta - 1 = (2\cos \theta - 1)(\cos \theta + 1) \qquad \text{MI}$ $\cos \theta = \frac{1}{2} (\cos \theta = -1 \text{ outside range for } \theta) \theta = \frac{\pi}{3} \qquad \text{MI}$ $A \text{ is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (4)$ $B \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (5)$ $E \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (6)$ $E \text{ Is } \left(1\frac{1}{2}, \frac{\pi}{3}\right) \qquad \text{AI } (6)$ $E \text{ Is } 0 \text{ or } r\cos \theta$ $A \text{ Is } \frac{d(r\sin \theta)}{d\theta} = 0 \text{ and solve the resulting equation. Only the solution used need be shown.$ $A \text{ Correct coordinates of A \\ (b) \text{BI } \text{ Use of } A \text{ are } \frac{1}{2}\int r^2 d\theta \text{ with } r = 1 + \cos \theta, \text{ limits not needed.}$ $M \text{ Attempt } (1 + \cos \theta)^2 \text{ (minimum accepted is } (1 + k\cos \theta + \cos^2 \theta) \text{ and change } \cos^2 \theta \text{ to an}$	3(a)	$y = r\sin\theta = \sin\theta + \sin\theta\cos\theta$ OR $r\sin\theta = \sin\theta + \frac{1}{2}\sin 2\theta$	B1
$\begin{aligned} \cos\theta &= \frac{1}{2} \left(\cos\theta = -1 \text{ outside range for } \theta \right) \theta = \frac{\pi}{3} \\ \text{M1} \\ A \text{ is } \left(1\frac{1}{2}, \frac{\pi}{3} \right) \\ \text{Area} &= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1 + \cos\theta)^{2} d\theta \\ &= \frac{1}{2} \int \left(1 + 2\cos\theta + \frac{1}{2}(\cos 2\theta + 1) \right) d\theta \\ &= \frac{1}{2} \int \left(1 + 2\cos\theta + \frac{1}{2}(\cos 2\theta + 1) \right) d\theta \\ &= \frac{1}{2} \left[\frac{3}{2} \theta + 2\sin\theta + \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \\ &= \frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16} \\ \end{aligned} \qquad \qquad$		$\frac{dy}{d\theta} = \cos\theta - \sin^2\theta + \cos^2\theta \qquad \text{OR} \frac{dy}{d\theta} = \cos\theta + \cos 2\theta$ $\theta = \cos\theta + 2\cos^2\theta - 1 = (2\cos\theta - 1)(\cos\theta + 1)$	M1
A is $\left(1\frac{1}{2}, \frac{\pi}{3}\right)$ A1 (4)3(b)Area $=\frac{1}{2}\int_{0}^{\frac{\pi}{3}}(1+\cos\theta)^{2}d\theta$ B1 $=\frac{1}{2}\int\left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)d\theta$ M1A1 $=\frac{1}{2}\left[\frac{3}{2}\theta+2\sin\theta+\frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$ dM1A1 $=\frac{\pi}{4}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{16}=\frac{\pi}{4}+\frac{9\sqrt{3}}{16}$ A1 (6)(a)Use of $r\sin\theta$ Award if not seen explicitly but a correct result following use of double angle formula is seen.M1Differentiate $r\sin\theta$ or $r\cos\theta$ M1Set $\frac{d(r\sin\theta)}{d\theta}=0$ and solve the resulting equation. Only the solution used need be shown.A1Correct coordinates of A(b)B1Use of Area $=\frac{1}{2}\int r^{2}d\theta$ with $r=1+\cos\theta$, limits not needed.M1Attempt $(1+\cos\theta)^{2}$ (minimum accepted is $(1+k\cos\theta+\cos^{2}\theta)$) and change $\cos^{2}\theta$ to an		$\cos\theta = \frac{1}{2} (\cos\theta = -1 \text{ outside range for } \theta) \theta = \frac{\pi}{3}$	M1
3(b) Area $=\frac{1}{2}\int_{0}^{\frac{\pi}{3}}(1+\cos\theta)^{2}d\theta$ B1 $=\frac{1}{2}\int(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1))d\theta$ M1A1 $=\frac{1}{2}\left[\frac{3}{2}\theta+2\sin\theta+\frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$ dM1A1 $=\frac{\pi}{4}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{16}=\frac{\pi}{4}+\frac{9\sqrt{3}}{16}$ A1 (6) [10] (a) Use of $r\sin\theta$ Award if not seen explicitly but a correct result following use of double angle formula is seen. M1 Differentiate $r\sin\theta$ or $r\cos\theta$ M1 Set $\frac{d(r\sin\theta)}{d\theta}=0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $=\frac{1}{2}\int r^{2}d\theta$ with $r=1+\cos\theta$, limits not needed. M1 Attempt $(1+\cos\theta)^{2}$ (minimum accepted is $(1+k\cos\theta+\cos^{2}\theta)$) and change $\cos^{2}\theta$ to an		A is $\left(1\frac{1}{2}, \frac{\pi}{3}\right)$	A1 (4)
$ \begin{array}{c c} = \frac{1}{2} \int \left(1 + 2\cos\theta + \frac{1}{2}(\cos 2\theta + 1) \right) d\theta & \qquad \text{M1A1} \\ = \frac{1}{2} \left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} & \qquad \text{dM1A1} \\ = \frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16} & \qquad \text{A1} & (6) \\ \hline & & & & \\ \end{array} $ $ \begin{array}{c} \textbf{(a)} & & \\ \textbf{B1} & & \\ \textbf{B1} & & \\ \textbf{Differentiate} \ r\sin\theta \ \text{Award if not seen explicitly but a correct result following use of double angle formula is seen. \\ \textbf{M1} & & \\ \textbf{Differentiate} \ r\sin\theta \ \text{or } r\cos\theta \\ \textbf{M1} & & \\ \textbf{Set} \ \frac{d(r\sin\theta)}{d\theta} = 0 \ \text{and solve the resulting equation. Only the solution used need be shown. \\ \textbf{A1} & & \\ \textbf{Correct coordinates of } A \\ \hline \textbf{(b)B1} & & \\ \textbf{Use of } Area = \frac{1}{2} \int r^2 d\theta \ \text{with } r = 1 + \cos\theta, \ \text{limits not needed.} \\ \hline \textbf{M1} & & \\ \textbf{Attempt} \left(1 + \cos\theta \right)^2 \left(\mininimum accepted is \left(1 + k\cos\theta + \cos^2\theta \right) \right) \text{ and change } \cos^2\theta \ \text{ to an} \\ \end{array} $	3(b)	Area $= \frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos \theta)^2 \mathrm{d}\theta$	B1
$= \frac{1}{2} \left[\frac{3}{2} \theta + 2\sin\theta + \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}}$ $= \frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$ (a) B1 Use of $r\sin\theta$ Award if not seen explicitly but a correct result following use of double angle formula is seen. M1 Differentiate $r\sin\theta$ or $r\cos\theta$ M1 Set $\frac{d(r\sin\theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed. M1 Attempt $(1 + \cos\theta)^2$ (minimum accepted is $(1 + k\cos\theta + \cos^2\theta)$) and change $\cos^2\theta$ to an		$=\frac{1}{2}\int \left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)d\theta$	M1A1
$= \frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$ (a) B1 Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use of double ang formula is seen. M1 Differentiate $r \sin \theta$ or $r \cos \theta$ M1 Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos \theta$, limits not needed. M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an		$=\frac{1}{2}\left[\frac{3}{2}\theta+2\sin\theta+\frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$	dM1A1
(a) B1 Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use of double ang formula is seen. M1 Differentiate $r \sin \theta$ or $r \cos \theta$ M1 Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos \theta$, limits not needed. M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an		$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1 (6)
B1 Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use of double ang formula is seen. M1 Differentiate $r \sin \theta$ or $r \cos \theta$ M1 Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 Correct coordinates of A (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos \theta$, limits not needed. M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an	(a)		
M1Differentiate $r \sin \theta$ or $r \cos \theta$ M1Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown.A1Correct coordinates of A(b)B1Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos \theta$, limits not needed.M1Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an	B1	formula is seen.	of double angle
M1 Set $\frac{d(r\sin\theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown. A1 (b)B1 Use of Area $= \frac{1}{2} \int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed. M1 Attempt $(1 + \cos\theta)^2$ (minimum accepted is $(1 + k\cos\theta + \cos^2\theta)$) and change $\cos^2\theta$ to an	M1	Differentiate $r\sin\theta$ or $r\cos\theta$	
A1 (b)B1 (b)B1 Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed. M1 Attempt $(1 + \cos\theta)^2$ (minimum accepted is $(1 + k\cos\theta + \cos^2\theta)$) and change $\cos^2\theta$ to an	M1	Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used need be shown.	
(b)B1 Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed. M1 Attempt $(1 + \cos\theta)^2$ (minimum accepted is $(1 + k\cos\theta + \cos^2\theta)$) and change $\cos^2\theta$ to an	A1	Correct coordinates of A	
M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change $\cos^2 \theta$ to an	(b)B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
	M1	Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change	$\cos^2\theta$ to an
expression in $\cos 2\theta$ using $\cos^2 \theta = \frac{1}{2} (\pm \cos 2\theta \pm 1)$		expression in $\cos 2\theta$ using $\cos^2 \theta = \frac{1}{2} (\pm \cos 2\theta \pm 1)$	
A1 Correct integrand; limits not needed. $\frac{1}{2}$ may be missing.	A1	Correct integrand; limits not needed. $\frac{1}{2}$ may be missing.	
dM1 Attempt to integrate all terms. $\cos 2\theta \rightarrow \pm \frac{1}{k} \sin 2\theta \ k = \pm 1 \text{ or } \pm 2$ Limits not needed.	dM1	Attempt to integrate all terms. $\cos 2\theta \rightarrow \pm \frac{1}{k} \sin 2\theta \ k = \pm 1 \text{ or } \pm 2$ Limits not	needed.
 Depends on the previous M mark A1 Correct integration and correct limits seen A1 Substitute correct limits and obtain the correct answer in the required form. 	A1 A1	Depends on the previous M mark Correct integration and correct limits seen Substitute correct limits and obtain the correct answer in the required form.	

Question Number	Scheme	Marks
	Alternative for (b) using integration by parts (Very rare but may be seen)	
	Area $= \frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos \theta)^2 \mathrm{d}\theta$	B1
	$=\frac{1}{2}\left[\int (1+2\cos\theta)d\theta + \int \cos^2\theta d\theta\right]$	
	$=\frac{1}{2}\left[\int (1+2\cos\theta)d\theta + \cos\theta\sin\theta + \int \sin^2\theta d\theta\right]$	M1A1
	$=\frac{1}{2}\left[\theta+2\sin\theta+\sin\theta\cos\theta+\int\left(1-\cos^2\theta\right)d\theta\right]_0^{\frac{\pi}{3}}$	
	$=\frac{1}{2}\left[\theta+2\sin\theta+\frac{1}{2}(\sin\theta\cos\theta+\theta)\right]_{0}^{\frac{\pi}{3}}$	dM1A1
	$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1
B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
M1	Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and attempt	ot first stage
IVII	of $\int \cos^2 \theta d\theta$ by parts. Reach $\int \cos^2 \theta d\theta = \cos \theta \sin \theta \pm \int \sin^2 \theta d\theta$ Limits	not needed
A1	Correct so far. Limits not needed.	
dM1	Attempt to integrate all terms. $\int (1+2\cos\theta) d\theta$ and attempt to complete \int	$\cos^2\theta d\theta$ using
A1A1	Pythagoras identity. Limits not needed. Depends on the previous M mark As main scheme	

Question Number	Scheme	Marks
4 (a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 3$	M1
	$\frac{d^3 y}{dx^3} = -\frac{4}{y^2} \left(\frac{dy}{dx}\right)^3 + \frac{8}{y} \times \frac{d^2 y}{dx^2} \times \frac{dy}{dx}$	M1A1A1
	$\frac{d^3 y}{dx^3} = -\frac{4}{y^2} \left(\frac{dy}{dx}\right)^3 + \frac{8}{y} \left(\frac{4}{y} \left(\frac{dy}{dx}\right)^2 - 3\right) \left(\frac{dy}{dx}\right)$	
	$\frac{d^3 y}{dx^3} = \frac{28}{y^2} \left(\frac{dy}{dx}\right)^3 - \frac{24}{y} \left(\frac{dy}{dx}\right) *$	A1* (5)
ALT	$\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - 8\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1A1A1
	$\frac{d^3 y}{dx^3} = \frac{1}{y} \left(7 \frac{dy}{dx} \right) \left(\frac{4}{y} \left(\frac{dy}{dx} \right)^2 - 3 \right) - \frac{3}{y} \frac{dy}{dx}$	M1
	$\frac{d^3 y}{dx^3} = \frac{28}{y^2} \left(\frac{dy}{dx}\right)^3 - \frac{24}{y} \left(\frac{dy}{dx}\right) *$	A1* (5)
4(b)	At $x = 0$ $\frac{d^2 y}{dx^2} = \frac{4}{8} (1)^2 - 3 = -\frac{5}{2}$ oe	B1
	$\frac{d^3 y}{dx^3} = \frac{28}{64} \times 1^3 - \frac{24}{8} \times 1 = -\frac{41}{16}$	M1
	$y = 8 + x - \frac{5}{2} \times \frac{x^2}{2!} - \frac{41}{16} \times \frac{x^3}{3!} + \dots$	M1
	$y = 8 + x - \frac{5}{4}x^2 - \frac{41}{96}x^3 + \dots$	A1 (4) [9]

Question Number	Scheme	Marks
5(a) M1	Divide through by y No need to re-arrange the equation until later	
M1	Attempt the differentiation using product rule and chain rule and obtain $\frac{d^3y}{dx^3}$	=
A1A1	A1 Either RHS term correct A1 Second RHS term correct and no extras	
A1*	Eliminate $\frac{d^2 y}{dx^2}$ and obtain the given result	
ALT M1 M1 A1A1 A1 [*]	Re-arrange the equation (Will probably be seen later in work) Attempt the differentiation using product rule and chain rule A1 Two terms correct A1 All correct and no extras Eliminate $\frac{d^2 y}{dx^2}$ and obtain the correct result	
5(b)B1	Correct value for $\frac{d^2 y}{dx^2}$	
M1	Use the <i>given</i> expression from (a) to obtain a value for $\frac{d^3 y}{dx^3}$ Award if correc	t value seen.
M1 A1	Taylor's series formed using their values for the derivatives (2! or 2, 3! or 6) Correct series, must start (or end) $y = \dots$ Correct terms must be seen, order m Can have $f(x) = \dots$ provided $f(x) = y$ is defined somewhere.	ay be different.

Question Number	Scheme	Marks
5 NB	Question states "Use algebra" so purely graphical solutions (using calculator?) score 0/7. A sketch and some algebra to find intersection points can score.	
	$2x^{2} + x - 3 \ge 0$ $2x^{2} + x - 3 = 3(1 - x) \Longrightarrow 2x^{2} + 4x - 6 = 0$	M1
	$2x^{2} + 4x - 6 \Longrightarrow x^{2} + 2x - 3 = (x + 3)(x - 1) = 0$ x = -3, 1	A1
	$2x^2 + x - 3 \le 0$	
	$-2x^{2} - x + 3 = 3(1 - x) \Longrightarrow 2x^{2} - 2x = 0$	M1
	$2x(x-1) = 0, \ x = 0, 1$	A1
	x < -3 0 < x < 1 x > 1	dM1A1A1 [7]
M1 A1 M1 A1 dM1 A1 A1 A1	The first 4 marks can be awarded with any inequality sign or = Assume $2x^2 + x - 3 \ge 0$ and obtain a 3TQ Correct CVs obtained from a correct equation. Assume $2x^2 + x - 3 \le 0$ and obtain a 2 or 3TQ Correct CVs obtained from a correct equation. Form 3 distinct inequalities with their 3 CVs. Can have $<$ or \le , $>$ or \ge . Mu both previous M marks. Accept $x < -3$ $0 < x$ $x \ne 1$ All 3 correct CVs used correctly Inequalities fully correct. "and" between the inequalities is acceptable. If \cap A0 here. Fully correct set language accepted.	ist have scored
ALT	Squaring both sides $(2x^{2} + x - 3)^{2} > 9(1 - x)^{2}$ $4x^{4} + 4x^{3} - 20x^{2} + 12x > 0$ x(x+3)(x-1)(x-1) > 0 CVs: $x = 0, -3, 1$ Then as main scheme	M1A1 M1 A1
M1 A1 M1 A1	These 4 marks can be awarded with any inequality sign or = Square both sides and collect terms to obtain a quartic with 4 or 5 terms Correct quartic Factorise their quartic 3 correct CVs	

Question Number	Scheme	Marks
6(a)	$m^2 - 6m + 8 = 0$	
	(m-2)(m-4) = 0, m = 2, 4	M1
	$(CF =) Ae^{2x} + Be^{4x}$	A1
	PI: $y = \lambda x^2 + \mu x + \nu$	B1
	$y' = 2\lambda x + \mu \qquad y'' = 2\lambda$	
	$2\lambda - 6(2\lambda x + \mu) + 8(\lambda x^2 + \mu x + \nu) = 2x^2 + x$	M1
	$\lambda = \frac{1}{4}, -12\lambda + 8\mu = 1, 2\lambda - 6\mu + 8\nu = 0$	M1
	$\lambda = \frac{1}{4}, \ \mu = \frac{1}{2}, \ \nu = \frac{5}{16}$	A1A1
	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	A1ft (8)
(a)M1	Form aux equation and attempt to solve (any valid method). Equation need n CE is computed an addition $(m = 2, 4)$ is also as	ot be shown if
A 1	CF is conject of complete solution $(m = 2, 4)$ is shown	
AI R1	Correct CF $y =$ not needed.	
M1	Their PI (minimum 2 terms) differentiated twice and substituted in the equation	on
M1	Coefficients equated	
A1	Any 2 values correct	
	All 3 values correct	
Alft	A complete solution, follow through their CF and PI. All 3 M marks must ha Must start $y =$	ve been earned.
6(b)	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	
	$1 = A + B + \frac{5}{16}$	M1
	$\frac{dy}{dx} = 2Ae^{2x} + 4Be^{4x} + \frac{1}{2}x + \frac{1}{2} \qquad 0 = 2A + 4B + \frac{1}{2}$	M1
	$A = \frac{13}{8} B = -\frac{15}{16}$ oe	dM1A1
	$y = \frac{13}{8}e^{2x} - \frac{15}{16}e^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16} \text{oe}$	A1ft (5)
		[13]
(b) M1	Substitute $y = 1$ and $y = 0$ in their complete solution from (a)	
1711	dv	
M1	Differentiate and substitute $\frac{dy}{dx} = 0$, $x = 0$	
dM1	Solve the 2 equations to $A = \dots$ or $B = \dots$ Depends on the two previous M man	ks
A1	Both values correct	
A1ft	Particular solution, follow through their general solution and A and B. Must s	start $y = \dots$

Question Number	Scheme	Marks	
7(a)	$(\cos\theta + i\sin\theta)^4 = \cos 4\theta + i\sin 4\theta$		
	$\cos^{4}\theta + 4\cos^{3}\theta(i\sin\theta) + \frac{4\times3}{2!}\cos^{2}\theta(i\sin\theta)^{2} + \frac{4\times3\times2}{3!}\cos\theta(i\sin\theta)^{3} + (i\sin\theta)^{4}$	M1	
	$=\cos^4\theta + 4i\cos^3\theta\sin\theta + i^26\cos^2\theta\sin^2\theta + 4i^3\cos\theta\sin^3\theta + i^4\sin^4\theta$	A1	
	$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	M1	
	$\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$	A1	
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta}{\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta}$		
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4\tan \theta - 4\tan^3 \theta}{1 - 6\tan^2 \theta + \tan^4 \theta} *$	M1A1* (6)	
7(b)	$x = \tan \theta \qquad \frac{2 \tan \theta - 2 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta} = \frac{1}{2} \tan 4\theta = 1$		
	$\tan 4\theta = 2$	M1	
	$x = \tan \theta = 0.284, \ 1.79$	A1A1 (3) [9]	
(a) M1 A1 M1 A1 M1 M1	Correct use of de Moivre and attempt the complete expansion Correct expansion. Coefficients to be single numbers but powers of i may still be present. Equate the real and imaginary parts Correct expressions for $\cos 4\theta$ and $\sin 4\theta$ Use $\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta}$ and divide numerator and denominator by $\cos^4 \theta$ Only tangents now.		
A1* (b)	Correct given answer, no errors seen.		
M1	Substitute $x = \tan \theta$ and re-arrange to $\tan 4\theta = \pm 2$ or $\pm \frac{1}{2}$		
A1A1	A1 for either solution; A2 for both. Deduct one mark only for failing to round either or both to 3 sf (One correct answer but not rounded scores A0A0; two correct answers neither rounded scores A1A0; two correct answers, only one rounded, scores A1A0)		

Question Number	Scheme	Marks
	Alternative for first 4 marks of 7(a): $\sin 4\theta = \frac{1}{2i} \left(z^4 - z^{-4} \right) = \frac{1}{2i} \left(\left(\cos \theta - i \sin \theta \right)^4 - \left(\cos \theta + i \sin \theta \right)^{-4} \right)$ $= \frac{1}{2i} \left(\cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta \right)$ $- \frac{1}{2i} \left(-\cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta - \sin^4 \theta \right)$ $= 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$ Similar work leads to $\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$ Remaining 2 marks as main scheme	M1 M1 A1 A1
M1 A1 M1 A1	For the expression derived from de Moivre for either $\sin 4\theta$ or $\cos 4\theta$ Both shown and correct Attempt the binomial expansion for either, reaching a simplified expression Both simplified expressions correct	

Question Number	Scheme	Marks	
8 (a)	$v = y^{-2}$ $\frac{dv}{dy} = -2y^{-3}$	B1	
	$\frac{dy}{dx} = \frac{dy}{dy} \times \frac{dv}{dx} = -\frac{y^3}{2} \frac{dv}{dx}$	M1A1	
	$-\frac{y^{3}}{2}\frac{dv}{dx} + 6xy = 3xe^{x^{2}}y^{3}$		
	$\frac{1}{2}\frac{dv}{dx} - \frac{6xy}{v^3} = -3xe^{x^2}$		
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2} \qquad \qquad$	dM1A1* (5)	
ALT 1	$y = v^{-\frac{1}{2}}$ $\frac{dy}{dv} = -\frac{1}{2}v^{-\frac{3}{2}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}v} \times \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{1}{2}v^{-\frac{3}{2}}\frac{\mathrm{d}v}{\mathrm{d}x}$	M1A1	
	$-\frac{1}{2}v^{-\frac{3}{2}}\frac{dv}{dx} + 6xv^{-\frac{1}{2}} = 3xe^{x^2}v^{-\frac{3}{2}}$	dM1	
	$-\frac{1}{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 6xv = 3x\mathrm{e}^{x^2}$		
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2} \qquad \qquad$	A1* (5)	
ALT 2	$v = y^{-2} \qquad \frac{\mathrm{d}v}{\mathrm{d}y} = -2y^{-3}$	B1	
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1	
	$-2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x} - 12y^{-2}x = -6xe^{x^2}$	dM1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 6xy = 3x\mathrm{e}^{x^2}y^3 \qquad x > 0$	A1* (5)	
8(a) B1	All Methods: Correct derivative		
M1	Attempt $\frac{dy}{dx}$ or $\frac{dv}{dx}$ using the chain rule		
A1 dM1	Correct derivative Substitute in equation (I) to obtain an equation in v and x only OR in equation (II) to obtain an equation in x and y only (ALT 2)		
A1*	Correct completion with no errors seen		

Question Number	Scheme	Marks	
8(b)	IF: $e^{\int -12x dx} = e^{-6x^2}$	M1A1	
	$ve^{-6x^2} = \int -6xe^{x^2} \times (e^{-6x^2}) dx = \int -6xe^{-5x^2} dx$	dM1	
	$v e^{-6x^2} = \frac{6}{10} e^{-5x^2} (+c)$	A1	
	$v\left(=y^{-2}\right) = \frac{6}{10}e^{x^2} + ce^{6x^2}$	ddM1	
	$y^{2} = \frac{1}{\frac{6}{10}e^{x^{2}} + ce^{6x^{2}}}$ oe eg $y^{2} = \frac{10}{6e^{x^{2}} + ke^{6x^{2}}}$	A1 (6)	
(b)		[11]	
M1 A1 dM1 A1 ddM1	IF of form $e^{\int \pm 12xdx}$ and attempt the integration. Correct IF Multiply through by their IF and integrate the LHS. Depends on first M mark of (b) Correct integration of the complete equation with or without constant		
A1	Any equivalent to that shown. (No need to change letter used for constant when rearranging)		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom